I know that I can evaluate one function with many data using apply, but can I evaluate many functions using one data? Using sapply i can get:
sapply(list(1:5,10:20,5:18), sum)
but I want somethnig like this:
sapply(1:5, list(sum, min,max))
and get
15 1 5
Any clever idea? :)
Swap the argument order, since you are looping over the functions not the data.
sapply(list(sum, min, max), function(f) f(1:5))
The two most preferred modern approaches for calculating summary statistics use the dplyr
and data.table
packages. dplyr
has a variety of solutions (only working with data frames, not vectors) using summarise
or summarise_each
.
library(dplyr)
data <- data.frame(x = 1:5)
summarise(data, min = min(x), max = max(x), sum = sum(x))
summarise_each(data, funs(min, max, sum))
The dplyr
-idiomatic style is to construct expressions using chaining.
data %>%
summarise(min = min(x), max = max(x), sum = sum(x))
data %>%
summarise_each(funs(min, max, sum))
For programmatic use (as opposed to interactive use), underscore-suffixed functions and formulae are recommended for non-standard evaluation.
data %>%
summarise_(min = ~ min(x), max = ~ max(x), sum = ~ sum(x))
data %>%
summarise_each_(funs_(c("min", "max", "sum"), "x")
See agstudy's answer for the data.table
solution.