I’m looking for a workaround for bit-field in overload resolution for template.
I have a function that I templated for perfect forwarding of its arguments:
template <typename... Args> void f(Args &&...args) { }
If I try to use it with a bit-field argument, like this:
struct bits { unsigned int foo:1; };
bits b{1};
f(b.foo);
…it fails to compile:
main.cpp:26:7: error: non-const reference cannot bind to bit-field 'foo' f(b.foo); ^~~~~
Is there a way to overload f()
such that it takes bit-fields by value but still takes other arguments by reference in the common case?
So far I haven't been able to. For instance, if I add an overload that takes arguments by value…
main.cpp:27:5: error: call to 'f' is ambiguous f(b.foo); ^
It can be done, if poorly. I recommend not doing this. Basically, the key part is since you can't have a pointer or a reference to a bitfield, you instead use a lambda which sets the bitfield for you.
I dislike macros as much as the next guy, but it's the only way I could think of to avoid requiring callers to put in a lambda at the callsite.
template<class assigner_type>
struct bitfieldref_type {
bitfieldref_type(bool value, assigner_type&& assign) :value(value), assign(std::move(assign)) {}
operator bool() const {return value;}
bitfieldref_type& operator=(bool v) {assign(v); value=v; return *this;}
private:
bool value;
assigner_type assign;
};
template<class assigner_type>
bitfieldref_type<assigner_type> make_bitfieldref(bool value, assigner_type&& assign)
{return {value, std::move(assign)};}
//macro is optional
#define bitfieldref(X) make_bitfieldref(X, [&](bool v)->void{X=v;})
usage:
template <class T, typename... Args> void proof_it_works(T&& first)
{first = 0;}
template <class T, typename... Args> void proof_it_works(T&& first, Args &&...args) {
first = 0;
proof_it_works(std::forward<Args>(args)...);
}
template <typename... Args> void f(Args &&...args) {proof_it_works(std::forward<Args>(args)...);}
int main() {
struct bits { unsigned int foo:1; };
bits b{1};
int a = -1;
float c = 3.14;
f(a, bitfieldref(b.foo), c);
std::cout << a << b.foo << c;
return 0;
}
I just noticed that my bitfieldref_type
assumes the value is a bool
, instead of a unsigned int
, but I'll leave fixing that as an excersize for the user.