Search code examples
rbioconductor

How to use limma ebayes for small samples? (R programming)


I have the following expression data from test and control, each contain two samples.

> test <- read.table("http://dpaste.com/1059889/plain/")
> control <-read.table("http://dpaste.com/1059891/plain/")
# in reality there are more  genes in each file.


> test
        V1         V2         V3
1   Gene_1 3694.11963 3591.95732
2   Gene_2  791.57558  753.04814
3   Gene_3 2751.34223 2562.46166
4   Gene_4 3068.07188 2651.62906
5   Gene_5  295.00476  247.78944
6   Gene_6 2737.22068 2824.85853
7   Gene_7 1274.54016 1196.54412
8   Gene_8 7011.31102 6703.59308
9   Gene_9  991.71137 1170.66072
10 Gene_10   67.83878   81.69033
11 Gene_11  139.96068  141.97499
12 Gene_12  337.40039  354.96356
13 Gene_13 2861.67548 3132.97426
14 Gene_14 1264.63942 1547.56872    

> control
        V1        V2        V3
1   Gene_1  98.76904 219.95533
2   Gene_2  64.13716 152.69867
3   Gene_3  84.54906 194.95583
4   Gene_4 106.64893 220.18668
5   Gene_5  50.30000  40.20000
6   Gene_6  24.22860  56.13421
7   Gene_7  43.08251  63.50765
8   Gene_8 408.95196 589.50150
9   Gene_9  37.68644  58.33591
10 Gene_10 100.33000 430.00000
11 Gene_11  23.24041  20.00000
12 Gene_12  17.64007  21.34300
13 Gene_13  65.45922  74.02418
14 Gene_14  43.69905  89.19588

I want to compute P-value using , to see if they are differentially expressed, using ebayes.

Using standard t.test is straightforward, but I find it not useful for small samples.

 t.test(c(test[2,]$V1,teste[2,]$V3),c(control[2,]$V1,control[2,]$V3))

What's the way to go about it? It's not clear from the help file.


Solution

  • There are two steps- first you create a matrix that is 4x14- the 4 replicates by the 14 (in your case) genes. Also create an experiment design: a data frame with one column, c(1, 1, 0, 0), indicating the first two columns of the matrix are test and the second two are control).

    library(limma)
    m = as.matrix(cbind(test[, 2:3], control[, 2:3]))
    rownames(m) = test[, 1]
    d = data.frame(condition=c(1, 1, 0, 0))
    

    Then you use lmFit to fit the linear model, and eBayes to adjust it and calculate p-values:

    fit = lmFit(m, d)
    e = eBayes(fit)
    

    The e object, which is of the class MArrayLM, contains the p-values and estimated coefficients, along with some other information:

    print(e$coefficients)
             condition
    # Gene_1  3643.03848
    # Gene_2   772.31186
    # ...
    print(e$p.value)
    #            condition
    # Gene_1  6.299507e-07
    # Gene_2  1.333970e-04
    names(e)
    #  [1] "coefficients"     "rank"             "assign"           "qr"              
    #  [5] "df.residual"      "sigma"            "cov.coefficients" "stdev.unscaled"  
    #  [9] "pivot"            "genes"            "Amean"            "method"          
    # [13] "design"           "df.prior"         "s2.prior"         "var.prior"       
    # [17] "proportion"       "s2.post"          "t"                "df.total"        
    # [21] "p.value"          "lods"             "F"                "F.p.value"       
    

    Incidentally, while limma is better for multiple reasons (it calculates other parameters, provides more options, and performs useful corrections), if you did want to perform a t.test to get p-values for each gene in a matrix, you could do this:

    pvals = apply(m, 1, function(r) t.test(r ~ d$condition)$p.value)