For 3 points in 2D :
P1(x1,y1),
P2(x2,y2),
P3(x3,y3)
I need to find a point P(x,y)
, such that the maximum of the manhattan distances
max(dist(P,P1),
dist(P,P2),
dist(P,P3))
will be minimal.
Any ideas about the algorithm?
I would really prefer an exact algorithm.
There is an exact, noniterative algorithm for the problem; as Knoothe pointed out, the Manhattan distance is rotationally equivalent to the Chebyshev distance, and P is trivially computable for the Chebyshev distance as the mean of the extreme coordinates.
The points reachable from P within the Manhattan distance x form a diamond around P. Therefore, we need to find the minimum diamond that encloses all points, and its center will be P.
If we rotate the coordinate system by 45 degrees, the diamond is a square. Therefore, the problem can be reduced to finding the smallest enclosing square of the points.
The center of a smallest enclosing square can be found as the center of the smallest enclosing rectangle (which is trivially computed as the max and min of the coordinates). There is an infinite number of smallest enclosing squares, since you can shift the center along the shorter edge of the minimum rectangle and still have a minimal enclosing square. For our purposes, we can simply use the one whose center coincides with the enclosing rectangle.
So, in algorithmic form:
Then x_c and y_c give the coordinates of P.