The following kernel computes an acoustic pressure field, with each thread computing it's own private instance of the pressure
vector, which then needs to be summed down into global memory.
I'm pretty sure the code which computes the pressure
vector is correct, but I'm still having trouble making this produce the expected result.
int gid = get_global_id(0);
int lid = get_local_id(0);
int nGroups = get_num_groups(0);
int groupSize = get_local_size(0);
int groupID = get_group_id(0);
/* Each workitem gets private storage for the pressure field.
* The private instances are then summed into local storage at the end.*/
private float2 pressure[HYD_DIM_TOTAL];
local float2 pressure_local[HYD_DIM_TOTAL];
/* Code which computes value of 'pressure' */
//wait for all workgroups to finish accessing any memory
barrier(CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE);
/// sum all results in a workgroup into local buffer:
for(i=0; i<groupSize; i++){
//each thread sums its own private instance into the local buffer
if (i == lid){
for(iHyd=0; iHyd<HYD_DIM_TOTAL; iHyd++){
pressure_local[iHyd] += pressure[iHyd];
}
}
//make sure all threads in workgroup get updated values of the local buffer
barrier(CLK_LOCAL_MEM_FENCE);
}
/// copy all the results into global storage
//1st thread in each workgroup writes the group's local buffer to global memory
if(lid == 0){
for(iHyd=0; iHyd<HYD_DIM_TOTAL; iHyd++){
pressure_global[groupID +nGroups*iHyd] = pressure_local[iHyd];
}
}
barrier(CLK_GLOBAL_MEM_FENCE);
/// sum the various instances in global memory into a single one
// 1st thread sums global instances
if(gid == 0){
for(iGroup=1; iGroup<nGroups; iGroup++){
//we only need to sum the results from the 1st group onward
for(iHyd=0; iHyd<HYD_DIM_TOTAL; iHyd++){
pressure_global[iHyd] += pressure_global[iGroup*HYD_DIM_TOTAL +iHyd];
barrier(CLK_GLOBAL_MEM_FENCE);
}
}
}
Some notes on data dimensions:
The total number of threads will vary between 100 and 2000, but may on occasion lie outside this interval.
groupSize
will depend on hardware but I'm currently using values between 1(cpu) and 32(gpu).
HYD_DIM_TOTAL
is known at compile time and varies between 4 and 32 (will generally, but not necessarily, be a power of 2).
Is there anything blatantly wrong with this reduction code?
PS: I run this on an i7 3930k with AMD APP SDK 2.8 and on an NVIDIA GTX580.
I notice two issues here, one big, one smaller:
Hope this helps.