I face the following issue. I have an extremely big table. This table is a heritage from the people who previously worked on the project. The table is in MS SQL Server.
The table has the following properties:
As you may guess, it is impossible to run any reasonable query to this table. Now people only insert new records into the table but nobody uses it. So I need to restructure it. I plan to create a new structure and refill the new structure with the data from the old table. Obviously, I will implement partioning, but it is not the only thing to be done.
One of the most important features of the table is that those fields that are purely textual (i.e. they don't have to be converted into another type) usually have frequently repeated values. So the actual variety of values in a given column is in the range of 5-30 different values. This induces the idea to make normalization: for every such a textual column I will create an additional table with the list of all the different values that may appear in this column, then I will create a (tinyint) primary key in this additional table and then will use an appropriate foreign key in the original table instead of keeping those text values in the original table. Then I will put an index on this foreign key column. The number of the columns to be processed this way is about 100.
It raises the following questions:
Sorry for such a long text.
Thanks for every comment!
PS I created a related question regarding joining 100 tables; Joining 100 tables
You'll find other benefits to normalizing the data besides the speed of queries running against it... such as size and maintainability, which alone should justify normalizing it...
However, it will also likely improve the speed of queries; currently having a single row containing 300 text columns is massive, and is almost certainly past the 8,060 byte limit for storing the row data page... and is instead being stored in the ROW_OVERFLOW_DATA
or LOB_DATA
Allocation Units.
By reducing the size of each row through normalization, such as replacing redundant text data with a TINYINT
foreign key, and by also removing columns that aren't dependent on this large table's primary key into another table, the data should no longer overflow, and you'll also be able to store more rows per page.
As far as the overhead added by performing JOIN
to get the normalized data... if you properly index your tables, this shouldn't add a substantial amount of overhead. However, if it does add an unacceptable overhead, you can then selectively de-normalize the data as necessary.