I am currently working on my Python game, in ika, which uses python 2.5
I decided to use A* pathfinding for the AI. However, I find it too slow for my needs (3-4 enemies can lag the game, but I would like to supply up to 4-5 without problems). I know, that such complex search like A* is not mean to be scripted in python, but I am pretty sure, that my pathfinder is also implemented in the wrong way.
My question is: How can I speed up this algorithm? I wrote my own binary heap, and there are some try: except: lines inside some functions. Those lines can create large overhead? Are there better methods maintaining the open list?
I supplied the algorithm with graphics interface, for testing purposes (when the pathfinder finishes searching, it will write the number of iterations and seconds it takes to find the path, inside the ika.txt file. Also, Pressing A will do a complete search, and S does that step by step.) Graphical version: http://data.hu/get/6084681/A_star.rar
Also, here is a pastebin version: http://pastebin.com/9N8ybX5F
Here is the main code I use for pathfinding:
import ika
import time
class Node:
def __init__(self,x,y,parent=None,g=0,h=0):
self.x = x
self.y = y
self.parent = parent
self.g = g
self.h = h
def cost(self):
return self.g + self.h
def equal(self,node):
if self.x == node.x and self.y == node.y:
return True
else:
return False
class Emerald_Pathfinder:
def __init__(self):
pass
def setup(self,start,goal):
self.start = start
self.goal = goal
self.openlist = [None,start] # Implemented as binary heap
self.closedlist = {} # Implemented as hash
self.onopenlist = {} # Hash, for searching the openlist
self.found = False
self.current = None
self.iterations = 0
def lowest_cost(self):
pass
def add_nodes(self,current):
nodes = []
x = current.x
y = current.y
self.add_node(x+1,y,current,10,nodes)
self.add_node(x-1,y,current,10,nodes)
self.add_node(x,y+1,current,10,nodes)
self.add_node(x,y-1,current,10,nodes)
# Dont cut across corners
up = map.is_obstacle((x,y-1),x,y-1)
down = map.is_obstacle((x,y+1),x,y+1)
left = map.is_obstacle((x-1,y),x-1,y)
right = map.is_obstacle((x+1,y),x+1,y)
if right == False and down == False:
self.add_node(x+1,y+1,current,14,nodes)
if left == False and up == False:
self.add_node(x-1,y-1,current,14,nodes)
if right == False and up == False:
self.add_node(x+1,y-1,current,14,nodes)
if left == False and down == False:
self.add_node(x-1,y+1,current,14,nodes)
return nodes
def heuristic(self,x1,y1,x2,y2):
return (abs(x1-x2)+abs(y1-y2))*10
def add_node(self,x,y,parent,cost,list):
# If not obstructed
if map.is_obstacle((x,y),x,y) == False:
g = parent.g + cost
h = self.heuristic(x,y,self.goal.x,self.goal.y)
node = Node(x,y,parent,g,h)
list.append(node)
def ignore(self,node,current):
# If its on the closed list, or open list, ignore
try:
if self.closedlist[(node.x,node.y)] == True:
return True
except:
pass
# If the node is on the openlist, do the following
try:
# If its on the open list
if self.onopenlist[(node.x,node.y)] != None:
# Get the id number of the item on the real open list
index = self.openlist.index(self.onopenlist[(node.x,node.y)])
# If one of the coordinates equal, its not diagonal.
if node.x == current.x or node.y == current.y:
cost = 10
else:
cost = 14
# Check, is this items G cost is higher, than the current G + cost
if self.openlist[index].g > (current.g + cost):
# If so, then, make the list items parent, the current node.
self.openlist[index].g = current.g + cost
self.openlist[index].parent = current
# Now resort the binary heap, in the right order.
self.resort_binary_heap(index)
# And ignore the node
return True
except:
pass
return False
def resort_binary_heap(self,index):
m = index
while m > 1:
if self.openlist[m/2].cost() > self.openlist[m].cost():
temp = self.openlist[m/2]
self.openlist[m/2] = self.openlist[m]
self.openlist[m] = temp
m = m / 2
else:
break
def heap_add(self,node):
self.openlist.append(node)
# Add item to the onopenlist.
self.onopenlist[(node.x,node.y)] = node
m = len(self.openlist)-1
while m > 1:
if self.openlist[m/2].cost() > self.openlist[m].cost():
temp = self.openlist[m/2]
self.openlist[m/2] = self.openlist[m]
self.openlist[m] = temp
m = m / 2
else:
break
def heap_remove(self):
if len(self.openlist) == 1:
return
first = self.openlist[1]
# Remove the first item from the onopenlist
self.onopenlist[(self.openlist[1].x,self.openlist[1].y)] = None
last = self.openlist.pop(len(self.openlist)-1)
if len(self.openlist) == 1:
return last
else:
self.openlist[1] = last
v = 1
while True:
u = v
# If there is two children
if (2*u)+1 < len(self.openlist):
if self.openlist[2*u].cost() <= self.openlist[u].cost():
v = 2*u
if self.openlist[(2*u)+1].cost() <= self.openlist[v].cost():
v = (2*u)+1
# If there is only one children
elif 2*u < len(self.openlist):
if self.openlist[2*u].cost() <= self.openlist[u].cost():
v = 2*u
# If at least one child is smaller, than parent, swap them
if u != v:
temp = self.openlist[u]
self.openlist[u] = self.openlist[v]
self.openlist[v] = temp
else:
break
return first
def iterate(self):
# If the open list is empty, exit the game
if len(self.openlist) == 1:
ika.Exit("no path found")
# Expand iteration by one
self.iterations += 1
# Make the current node the lowest cost
self.current = self.heap_remove()
# Add it to the closed list
self.closedlist[(self.current.x,self.current.y)] = True
# Are we there yet?
if self.current.equal(self.goal) == True:
# Target reached
self.goal = self.current
self.found = True
print self.iterations
else:
# Add the adjacent nodes, and check them
nodes_around = self.add_nodes(self.current)
for na in nodes_around:
if self.ignore(na,self.current) == False:
self.heap_add(na)
def iterateloop(self):
time1 = time.clock()
while 1:
# If the open list is empty, exit the game
if len(self.openlist) == 1:
ika.Exit("no path found")
# Expand iteration by one
self.iterations += 1
# Make the current node the lowest cost
self.current = self.heap_remove()
# Add it to the closed list
self.closedlist[(self.current.x,self.current.y)] = True
# Are we there yet?
if self.current.equal(self.goal) == True:
# Target reached
self.goal = self.current
self.found = True
print "Number of iterations"
print self.iterations
break
else:
# Add the adjacent nodes, and check them
nodes_around = self.add_nodes(self.current)
for na in nodes_around:
if self.ignore(na,self.current) == False:
self.heap_add(na)
time2 = time.clock()
time3 = time2-time1
print "Seconds to find path:"
print time3
class Map:
def __init__(self):
self.map_size_x = 20
self.map_size_y = 15
self.obstructed = {} # Library, containing x,y couples
self.start = [2*40,3*40]
self.unit = [16*40,8*40]
def is_obstacle(self,couple,x,y):
if (x >= self.map_size_x or x < 0) or (y >= self.map_size_y or y < 0):
return True
try:
if self.obstructed[(couple)] != None:
return True
except:
return False
def render_screen():
# Draw the Character
ika.Video.DrawRect(map.start[0],map.start[1],map.start[0]+40,map.start[1]+40,ika.RGB(40,200,10),1)
# Draw walls
for x in range(0,map.map_size_x):
for y in range(0,map.map_size_y):
if map.is_obstacle((x,y),x,y) == True:
ika.Video.DrawRect(x*40,y*40,(x*40)+40,(y*40)+40,ika.RGB(168,44,0),1)
# Draw openlist items
for node in path.openlist:
if node == None:
continue
x = node.x
y = node.y
ika.Video.DrawRect(x*40,y*40,(x*40)+40,(y*40)+40,ika.RGB(100,100,100,50),1)
# Draw closedlist items
for x in range(0,map.map_size_x):
for y in range(0,map.map_size_y):
try:
if path.closedlist[(x,y)] == True:
ika.Video.DrawRect(x*40,y*40,(x*40)+20,(y*40)+20,ika.RGB(0,0,255))
except:
pass
# Draw the current square
try:
ika.Video.DrawRect(path.current.x*40,path.current.y*40,(path.current.x*40)+40,(path.current.y*40)+40,ika.RGB(128,128,128), 1)
except:
pass
ika.Video.DrawRect(mouse_x.Position(),mouse_y.Position(),mouse_x.Position()+8,mouse_y.Position()+8,ika.RGB(128,128,128), 1)
# Draw the path, if reached
if path.found == True:
node = path.goal
while node.parent:
ika.Video.DrawRect(node.x*40,node.y*40,(node.x*40)+40,(node.y*40)+40,ika.RGB(40,200,200),1)
node = node.parent
# Draw the Target
ika.Video.DrawRect(map.unit[0],map.unit[1],map.unit[0]+40,map.unit[1]+40,ika.RGB(128,40,200),1)
def mainloop():
while 1:
render_screen()
if mouse_middle.Pressed():
# Iterate pathfinder
if path.found == False:
path.iterateloop()
elif mouse_right.Pressed():
# Iterate pathfinder by one
if path.found == False:
path.iterate()
elif ika.Input.keyboard["A"].Pressed():
# Iterate pathfinder
if path.found == False:
path.iterateloop()
elif ika.Input.keyboard["S"].Pressed():
# Iterate pathfinder by one
if path.found == False:
path.iterate()
elif mouse_left.Position():
# Add a square to the map, to be obstructed
if path.iterations == 0:
x = mouse_x.Position()
y = mouse_y.Position()
map.obstructed[(int(x/40),int(y/40))] = True
# Mouse preview
x = mouse_x.Position()
y = mouse_y.Position()
mx = int(x/40)*40
my = int(y/40)*40
ika.Video.DrawRect(mx,my,mx+40,my+40,ika.RGB(150,150,150,70),1)
ika.Video.ShowPage()
ika.Input.Update()
map = Map()
path = Emerald_Pathfinder()
path.setup(Node(map.start[0]/40,map.start[1]/40),Node(map.unit[0]/40,map.unit[1]/40))
mouse_middle = ika.Input.mouse.middle
mouse_right = ika.Input.mouse.right
mouse_left = ika.Input.mouse.left
mouse_x = ika.Input.mouse.x
mouse_y = ika.Input.mouse.y
# Initialize loop
mainloop()
I appreciate any help! (sorry for any spelling mistakes, English is not my native language)
I think a proper implementation in python will be fast enough for your purposes. But the boost library has an astar implementation and python bindings. https://github.com/erwinvaneijk/bgl-python