Search code examples
maple

Integral by parts in Maple


I know that under "with(student)" package, I can solve some integral by parts. I applied this to $int(x*sin(x),x)$ for example and got my answer but, couldn't use for $int(exp(x)*sin(x),x)$ . I ask if this rule command packaged under with(student) can be applied for a certain kinds of integral or not? Thanks for your help.


Solution

  • with(student):
    
    s1 := Int(exp(x)*sin(x),x) = intparts(Int(exp(x)*sin(x),x),sin(x));
    
       /                                    /  /                 \
      |                                     | |                  |
      |  exp(x) sin(x) dx = exp(x) sin(x) - | |  cos(x) exp(x) dx|
      |                                     | |                  |
     /                                      \/                   /
    
    s2 := Int(exp(x)*cos(x),x) = expand( intparts(Int(exp(x)*cos(x),x),cos(x)) );
    
       /                                    /  /                 \
      |                                     | |                  |
      |  cos(x) exp(x) dx = cos(x) exp(x) + | |  exp(x) sin(x) dx|
      |                                     | |                  |
     /                                      \/                   /
    
    s3 := subs(s2,s1);
    
            /                                                 
           |                                                  
           |  exp(x) sin(x) dx = exp(x) sin(x) - cos(x) exp(x)
           |                                                  
          /                                                   
    
               /  /                 \
               | |                  |
             - | |  exp(x) sin(x) dx|
               | |                  |
               \/                   /
    
    s4 := lhs(s3) + Int(exp(x)*sin(x),x) = rhs(s3) + Int(exp(x)*sin(x),x);
    
          /  /                 \                                
          | |                  |                                
        2 | |  exp(x) sin(x) dx| = exp(x) sin(x) - cos(x) exp(x)
          | |                  |                                
          \/                   /                                
    
    lhs(s4)/2 = rhs(s4)/2;
    
          /                                                     
         |                     1                 1              
         |  exp(x) sin(x) dx = - exp(x) sin(x) - - cos(x) exp(x)
         |                     2                 2              
        /                                                       
    

    ...and we're done.