I would like to import the following csv as strings not as int64. Pandas read_csv automatically converts it to int64, but I need this column as string.
ID
00013007854817840016671868
00013007854817840016749251
00013007854817840016754630
00013007854817840016781876
00013007854817840017028824
00013007854817840017963235
00013007854817840018860166
df = read_csv('sample.csv')
df.ID
>>
0 -9223372036854775808
1 -9223372036854775808
2 -9223372036854775808
3 -9223372036854775808
4 -9223372036854775808
5 -9223372036854775808
6 -9223372036854775808
Name: ID
Unfortunately using converters gives the same result.
df = read_csv('sample.csv', converters={'ID': str})
df.ID
>>
0 -9223372036854775808
1 -9223372036854775808
2 -9223372036854775808
3 -9223372036854775808
4 -9223372036854775808
5 -9223372036854775808
6 -9223372036854775808
Name: ID
Just want to reiterate this will work in pandas >= 0.9.1:
In [2]: read_csv('sample.csv', dtype={'ID': object})
Out[2]:
ID
0 00013007854817840016671868
1 00013007854817840016749251
2 00013007854817840016754630
3 00013007854817840016781876
4 00013007854817840017028824
5 00013007854817840017963235
6 00013007854817840018860166
I'm creating an issue about detecting integer overflows also.
EDIT: See resolution here: https://github.com/pydata/pandas/issues/2247
Update as it helps others:
To have all columns as str, one can do this (from the comment):
pd.read_csv('sample.csv', dtype = str)
To have most or selective columns as str, one can do this:
# lst of column names which needs to be string
lst_str_cols = ['prefix', 'serial']
# use dictionary comprehension to make dict of dtypes
dict_dtypes = {x : 'str' for x in lst_str_cols}
# use dict on dtypes
pd.read_csv('sample.csv', dtype=dict_dtypes)