I have an physical instrument of measurement (force platform with load cells) which gives me three values, A, B and C. It happens, though, that these values - that should be orthogonal - actually are somewhat coupled, due to physical characteristics of the measuring device, which causes cross-talk between applied and returned values of force and torque.
Then, it is recommended that a calibration matrix be used to transform the measured values into a better estimate of the actual values, like this:
The problem is that it is necessary to perform a SET of measurements, so that different measured(Fz, Mx, My)
and actual(Fz, Mx, My)
are least-squared to get some C matrix that works best for the system as a whole.
I can solve Ax = B
problems with scipy.linalg.lststq
, or even scipy.linalg.solve
(giving an exact solution) for ONE measurement, but how should I proceed to consider a set of different measurements, each one with its own equation giving a potentially different 3x3 matrix?
Any help is much appreciated, thanks for reading.
I posted a similar question containing just the mathematical part of this at math.stackexchange.com, and this answer solved the problem:
math.stackexchange.com/a/232124/27435
In case anyone have a similar problem in the future, here is the almost literal Scipy implementation of that answer (first lines are initialization boilerplate code):
import numpy
import scipy.linalg
### Origin of the coordinate system: upper left corner!
"""
1----------2
| |
| |
4----------3
"""
platform_width = 600
platform_height = 400
# positions of each load cell (one per corner)
loadcell_positions = numpy.array([[0, 0],
[platform_width, 0],
[platform_width, platform_height],
[0, platform_height]])
platform_origin = numpy.array([platform_width, platform_height]) * 0.5
# applying a known force at known positions and taking the measurements
measurements_per_axis = 5
total_load = 50
results = []
for x in numpy.linspace(0, platform_width, measurements_per_axis):
for y in numpy.linspace(0, platform_height, measurements_per_axis):
position = numpy.array([x,y])
for loadpos in loadcell_positions:
moments = platform_origin-loadpos * total_load
load = numpy.array([total_load])
result = numpy.hstack([load, moments])
results.append(result)
results = numpy.array(results)
noise = numpy.random.rand(*results.shape) - 0.5
measurements = results + noise
# now expand ("stuff") the 3x3 matrix to get a linearly independent 3x3 matrix
expands = []
for n in xrange(measurements.shape[0]):
k = results[n,:]
m = measurements[n,:]
expand = numpy.zeros((3,9))
expand[0,0:3] = m
expand[1,3:6] = m
expand[2,6:9] = m
expands.append(expand)
expands = numpy.vstack(expands)
# perform the actual regression
C = scipy.linalg.lstsq(expands, measurements.reshape((-1,1)))
C = numpy.array(C[0]).reshape((3,3))
# the result with pure noise (not actual coupling) should be
# very close to a 3x3 identity matrix (and is!)
print C
Hope this helps someone!