I have an object from a library (numpy.ndarray), in which I've substituted the _iadd_ method for a custom one. If I call object._iadd_(x), it works as expected. However, object+=x seems to call the old (unsubstituted) method. I wanted to prevent overflows on numpy from occurring on specific cases, so I created a context manager for that. Here's the (still very crude) code:
class NumpyOverflowPreventer( object ):
inverse_operator= {'__iadd__':'__sub__', '__isub__':'__add__', '__imul__': '__div__', '__idiv__':'__mul__'}
def _operate(self, b, forward_operator):
assert type(b) in (int, float)
reverse_operator= NumpyOverflowPreventer.inverse_operator[forward_operator]
uro= getattr(self.upper_range, reverse_operator)
lro= getattr(self.lower_range, reverse_operator)
afo= self.originals[ forward_operator ]
overflows= self.matrix > uro( b )
underflows= self.matrix < lro( b )
afo( b )
self.matrix[overflows]= self.upper_range
self.matrix[underflows]= self.lower_range
def __init__(self, matrix):
m= matrix
assert m.dtype==np.uint8
self.matrix= m
self.lower_range= float(0)
self.upper_range= float(2**8-1)
def __enter__(self):
import functools
self.originals={}
for op in NumpyOverflowPreventer.inverse_operator.keys():
self.originals[ op ] = getattr( self.matrix, op )
setattr( self.matrix, op, functools.partial(self._operate, forward_operator=op))
def __exit__(self, type, value, tb):
for op in NumpyOverflowPreventer.inverse_operator.keys():
setattr( self.matrix, op, self.originals[ op ] )
running this:
a= np.matrix(255, dtype= np.uint8)
b= np.matrix(255, dtype= np.uint8)
with NumpyOverflowPreventer(a):
a+=1
with NumpyOverflowPreventer(b):
b.__iadd__(1)
print a,b
returns this:
[[0]] [[255]]
The issue you are seeing is that the special built-in methods are not looked up on the instance. They are looked up on the matrix
type. So replacing them on the instance will not cause them to be used indirectly.
One way to achieve your goal is to instead make NumpyOverflowPreventer
a wrapper for the operations you want to address...
import numpy as np
import sys
class NumpyOverflowPreventer(object):
inverse_operator= {
'__iadd__': '__sub__',
'__isub__': '__add__',
'__imul__': '__div__',
'__idiv__': '__mul__'
}
def __init__(self, matrix):
m = matrix
assert m.dtype==np.uint8
self.matrix = m
self.lower_range = float(0)
self.upper_range = float(2**8-1)
def __iadd__(self, v):
# dynamic way to get the name "__iadd__"
self._operate(v, sys._getframe().f_code.co_name)
return self
def _operate(self, b, forward_operator):
assert type(b) in (int, float)
reverse_operator = self.inverse_operator[forward_operator]
uro= getattr(self.upper_range, reverse_operator)
lro= getattr(self.lower_range, reverse_operator)
afo= getattr(self.matrix, forward_operator)
overflows= self.matrix > uro( b )
underflows= self.matrix < lro( b )
afo( b )
self.matrix[overflows]= self.upper_range
self.matrix[underflows]= self.lower_range
I have only defined __iadd__
here, and I am sure you could do all of them dynamically with some metaclass/decorator action...but I am keeping it simple.
Usage:
a = np.matrix(255, dtype= np.uint8)
b = np.matrix(255, dtype= np.uint8)
p = NumpyOverflowPreventer(a)
p+=1
p = NumpyOverflowPreventer(b)
p.__iadd__(1)
print a,b
# [[255]] [[255]]