I am looking for tools and techniques for prototyping (virtual prototyping), simulation, and testing of deeply embedded C code on desktop Windows, including building realistic embedded front panels consisting of buttons, LEDs, and LCD displays (both segmented and graphic).
I'm specifically interested in a possibly low-level approach, using pure C code and raw Win32 API rather than MFC, .NET/C#, vxWidgets or Qt. I'd also like to use free development tools, such as Visual C++ Express with Platform SDK and ResEdit for editing resources.
I'm looking for code examples to render graphic LCDs (from monochrome to 24-bit color) with efficient pixel-level interface, multi-segment LCDs, and owner-drawn buttons that respond both to "depressed" and "released" events.
I am surprised that my original question triggered so many misunderstandings and adverse comments. The strategy of developing deeply embedded C code on one machine (e.g., a PC) and running it on another (the embedded microcontroller) is called "dual targeting" and is really quite common. For example, developing and testing deeply embedded code on the PC is the cornerstone of the recent book "Test-Driven Development for Embedded C" by James Grenning.
Avoiding Target Hardware Bottleneck with Dual Targeting
Please note that dual targeting does not mean that the embedded device has anything to do with the PC. Neither it means that the simulation must be cycle-exact with the embedded target CPU.
Dual targeting simply means that from day one, your embedded code (typically in C) is designed to run on at least two platforms: the final target hardware and your PC. All you really need for this is two C compilers: one for the PC and another for the embedded device.
However, the dual targeting strategy does require a specific way of designing the embedded software such that any target hardware dependencies are handled through a well-defined interface often called the Board Support Package (BSP). This interface has at least two implementations: one for the actual target and one for the PC, for example running Windows. With such interface in place, the bulk of the embedded code can remain completely unaware which BSP implementation it is linked to and so it can be developed quickly on the PC, but can also run on the target hardware without any changes.
While some embedded programmers can view dual targeting as a self-inflicted burden, the more experienced developers generally agree that paying attention to the boundaries between software and hardware is actually beneficial, because it results in more modular, more portable, and more maintainable software with much longer useful lifetime. The investment in dual targeting has also an immediate payback in the vastly accelerated compile-run-debug cycle, which is much faster and more productive on the powerful PC compared to much slower, recourse-constrained deeply embedded target with limited visibility into the running code.
Front Panel Win32 GUI Toolkit
When developing embedded code for devices with non-trivial user interfaces, one often runs into the problem of representing the embedded front panels as GUI elements on the PC. The problem is so common, that I'm really surprised that nobody here could recommend an existing library or an open source project, which would provide a simple C-only interface to the basic elements, such as LCDs, buttons, and LEDs. This is really not that complicated, yet it seems that every embedded developer has to re-invent this wheel over and over again.
So, to help embedded developers interested in prototyping embedded devices on Windows, I have created a "Front Panel Win32 GUI Toolkit" and have posted it online under the GPL open source license (see http://www.state-machine.com/win32). This toolkit relies only on the raw Win32 API in C and currently provides the following elements:
Dot-matrix display for an efficient, pixel-addressable displays such as graphical LCDs, OLEDs, etc. with up to 24-bit color
Segment display for segmented display such as segment LCDs, and segment LEDs with generic, custom bitmaps for the segments.
Owner-drawn buttons with custom “depressed” and “released” bitmaps and capable of generating separate events when depressed and when released.
The toolkit comes with an example and an App Note (see http://www.state-machine.com/win32/AN_Win32-GUI.pdf), showing how to handle input from the owner-drawn buttons, regular buttons, keyboard, and the mouse. You can also view an animated demo at http://www.state-machine.com/win32/front_panel.html.
Regarding the size and complexity of the "Front Panel Win32 GUI Toolkit", the implementation of the aforementioned GUI elements takes only about 250 lines of C. The example with all sources of input and a lot of comments amounts to some 300 lines of C. The toolkit has been tested with the free Visual C++ Express 2010 (with the Express Edition Platform SDK) and the free ResEdit resource editor.
Enjoy!