I am trying to write a program that does the following:
The equation looks quite nasty, but everything is a constant other than V. Here is the equation. The equation isn't very important.
How should I go about this problem? My attempt (as shown below) does not calculate the integral for each value of V read from the file.
from scipy import integrate #integrate.quad
from numpy import *
import pylab
import datetime
import time
import os
import math
# import V
fn = 'cooltemp.dat'
V = loadtxt(fn,unpack=True,usecols=[1])
# variables
del1, del2, R, E, fE, fEeV = 1,2,1,2,1,1
e = 1.602176565*10**-19
# eqn = dint(abc)
a = E/( math.sqrt( E**2 - del1**2 ) )
b = ( E+ e*V )/( math.sqrt( ( E + e*V )**2) - del2**2)
c = fE-fEeV
d = 1/(e*R) # integration constant
eqn = a*b*c
# integrate
result = quad(lambda E: eqn,-inf,inf)
# current
I = result*d
# plot IV curve
pylab.plot(V,I,'-r')
## customise graph
pylab.legend(['degree '+str(n),'degree '+str(q),'data'])
pylab.axis([0,max(x),0,max(y)])
pylab.xlabel('voltage (V)')
pylab.ylabel('current (A)')
tc = datetime.datetime.fromtimestamp(os.path.getmtime(fn))
pylab.title('IV curve\n'+fn+'\n'+str(tc)+'\n'+str(datetime.datetime.now()))
pylab.grid(True)
pylab.show()
* Updated attempt:
from scipy import integrate
from numpy import *
import pylab
import datetime
import time
import os
import math
# import V
fn = 'cooltemp.dat'
V = loadtxt(fn,unpack=True,usecols=[1])
# print V
# variables
del1, del2, R, E, fE, fEeV = 1.0,2.0,1.0,2.0,1.0,1.0
e = 1.602176565*10**-19
I=[]
for n in range(len(V)):
constant = 1/(e*R) # integration constant
eqn = (E/( math.sqrt( E**2 - del1**2 ) ))*(( E + e*V[n] )/( math.sqrt( ( E + e*V[n] )**2) - del2**2))*(fE-fEeV)
# integrate
result,error = integrate.quad(lambda E: eqn,-inf,inf)
print result
# current
I.append(result*constant)
I = array(I)
# plot IV curve
pylab.plot(V,I,'-b')
You have a few problems:
The "function" you pass to quad
always returns eqn, which is just a precalculated number. You need to define a proper function that takes a given value for E as input and returns the integrand. This function will also need to assume a fixed value for V. Assuming the code you provided calculates the proper quantity for a given value of V and E (I haven't checked, just copy-pasting):
# import V
fn = 'cooltemp.dat'
V = loadtxt(fn,unpack=True,usecols=[1])
# print V
@np.vectorize
def result(x):
def integrand(E):
del1, del2, R, fE, fEeV = 1.0,2.0,1.0,1.0,1.0
e = 1.602176565*10**-19
a = E/( math.sqrt( E**2 - del1**2 ) )
b = ( E+ e*x )/( math.sqrt( ( E + e*x )**2) - del2**2)
c = fE-fEeV
d = 1/(e*R) # integration constant
return a * b * c
return quad(integrand, -inf, inf)
I = result(V)
To Summarize:
result(v)
evaluates the full integral (over E) for a fixed value of vintegrand(E)
evaluates the integrand at fixed E (the integration variable) and, incidentally, fixed V (it grabs the value from outside the function, which is why the definition for integrand is nested inside the definition for result)@np.vectorize
trick is just a nice convenience function that allows you to pass arrays for V into result
. Numpy will loop over the values for you, and return an array instead of a scalar