(ab+cd)(a'b'+c'd') = 1+ abc'd' + a'b'cd +1
so I'm stuck at
abc'd'+a'b'cd
but the final answer is
(a+b)(c+d)+(a'+b')(c'+d')
What am I missing?
It seems to me that those two expressions are complementary, i.e. the only two cases where (a+b)(c+d)+(a'+b')(c'+d')
are false are abc'd'
and a'b'cd
.
Edit: Somewhere along the line I think you've lost a '
and you're actually looking for one of these:
((ab+cd)(a'b'+c'd'))'
(ab+cd)'+(a'b'+c'd')'
((ab)'(cd)')+((a'b')'(c'd')')
(a'+b')(c'+d')+(a+b)(c+d)
(a+b)(c+d)+(a'+b')(c'+d')
(ab+cd)(a'b'+c'd')
(a'b'+c'd')(ab+cd)
((a+b)'+(c+d)')((a'+b')'+(c'+d')')
((a+b)(c+d))'((a'+b')(c'+d'))'
((a+b)(c+d)+(a'+b')(c'+d'))'