I have an order-statistic augmented red black tree.
it works for the most part. but i need to implement a fast function (O(lg n)) that mostly returns the place of a node in sorted order. like the OS-rank function from my textbook. but with one twist: the return value if two nodes have the same score, should be the same. here is the os-rank function (in pseudocode, for a given node x, where root is the root of the tree).
OS-Rank(x)
r=x.left.size+1
y=x
while y!=root
if y==y.p.right
r+=y.p.left.size+1
y=y.p
return r
But: what i need is something where if A has key 1 and Node B has key 1, the function returns 1 for both. and so on. I tried myself with something like this.
rank(x)
start with value r=1
check that x.right is not Nil
case x.right has the same key as x
add x.right.#nodeswithkeyhigher(x.key) to r
other cases: add x.right.size to r
y=x
while y != root
if y.parent.left == y
case y.parent.right.key>x.key
add y.parent.right to r
other cases
add y.parent.right.#nodeswithkeyhigher(x.key) to r
y=y.parent
return r
Guess what: a testcase failed. I'd like to know if this is a correct way of doing things, or if perhaps i made some mistake i am not seeing (else the mistake is in the Node.#nodeswithkeyhigher(key) function).
edit: final paragraph for answer, thanks to Sticky.
tl;dr: skip to last paragraphs
This is the same issue I'm having trouble with. (Yes DS aswell). So far all runs except 5 are correct. I've tested several things, one being a very simple one: Just exchange left and right in OSRank. In some cases it gave a correct answer but in the harder cases it was quite a bit off. Oh I also added that if y.score == y.parent.score I only add the right size of y.parent, if not I add the right size + 1.
public int OSRank(Node x)
{
int r = x.Right.Size + 1;
Node y = x;
while (y != root)
{
if (y == y.Parent.Left)
{
if (y.Score == y.Parent.Score)
r = r + y.Parent.Right.Size;
else
r = r + y.Parent.Right.Size + 1;
}
y = y.Parent;
}
return r;
}
Let's first test this method on the tree on page 340 (figure 14.1). We'll search for the rank of 38 (which should return 4 because 39, 47 and 41 are higher):
So in this case the result is correct. But what if we add another node with key 38 to our tree. That reshapes our tree a bit, the right part of node 26 now looks like:
(I'm not allowed to add images yet so look here:http://i47.tinypic.com/358ynhh.png)
If we would use the same algorithm we'd get the following result (picking the red one):
Though we expect rank 4 here. While I was typing this out I noticed that we check if y.Score == y.Parent.Score, but I completely forgot y changes. So in line 4 the clause "y.Score == y.Parent.Score" was false because we compared node 30 with 38. So if we change that line to:
if (x.Score == y.Parent.Score)
The algorithm outputs rank 4, which is correct. This means we eliminated another issue. But there are more, which I didn't figure out either:
edit: First find the final successor of x with the same score x. Then calculate the rank the normal way. The code above works.