Let E be a given directed edge set. Suppose it is known that the edges in E can form a directed tree T with all the nodes (except the root node) has only 1 in-degree. The problem is how to efficiently traverse the edge set E, in order to find all the paths in T?
For example, Given a directed edge set E={(1,2),(1,5),(5,6),(1,4),(2,3)}. We know that such a set E can generate a directed tree T with only 1 in-degree (except the root node). Is there any fast method to traverse the edge set E, in order to find all the paths as follows:
Path1 = {(1,2),(2,3)}
Path2 = {(1,4)}
Path3 = {(1,5),(5,6)}
By the way, suppose the number of edges in E is |E|, is there complexity bound to find all the paths?
I have not worked on this kind of problems earlier. So just tried out a simple solution. Check this out.
public class PathFinder
{
private static Dictionary<string, Path> pathsDictionary = new Dictionary<string, Path>();
private static List<Path> newPaths = new List<Path>();
public static Dictionary<string, Path> GetBestPaths(List<Edge> edgesInTree)
{
foreach (var e in edgesInTree)
{
SetNewPathsToAdd(e);
UpdatePaths();
}
return pathsDictionary;
}
private static void SetNewPathsToAdd(Edge currentEdge)
{
newPaths.Clear();
newPaths.Add(new Path(new List<Edge> { currentEdge }));
if (!pathsDictionary.ContainsKey(currentEdge.PathKey()))
{
var pathKeys = pathsDictionary.Keys.Where(c => c.Split(",".ToCharArray())[1] == currentEdge.StartPoint.ToString()).ToList();
pathKeys.ForEach(key => { var newPath = new Path(pathsDictionary[key].ConnectedEdges); newPath.ConnectedEdges.Add(currentEdge); newPaths.Add(newPath); });
pathKeys = pathsDictionary.Keys.Where(c => c.Split(",".ToCharArray())[0] == currentEdge.EndPoint.ToString()).ToList();
pathKeys.ForEach(key => { var newPath = new Path(pathsDictionary[key].ConnectedEdges); newPath.ConnectedEdges.Insert(0, currentEdge); newPaths.Add(newPath); });
}
}
private static void UpdatePaths()
{
Path oldPath = null;
foreach (Path newPath in newPaths)
{
if (!pathsDictionary.ContainsKey(newPath.PathKey()))
pathsDictionary.Add(newPath.PathKey(), newPath);
else
{
oldPath = pathsDictionary[newPath.PathKey()];
if (newPath.PathWeights < oldPath.PathWeights)
pathsDictionary[newPath.PathKey()] = newPath;
}
}
}
}
public static class Extensions
{
public static bool IsNullOrEmpty(this IEnumerable<object> collection) { return collection == null || collection.Count() > 0; }
public static string PathKey(this ILine line) { return string.Format("{0},{1}", line.StartPoint, line.EndPoint); }
}
public interface ILine
{
int StartPoint { get; }
int EndPoint { get; }
}
public class Edge :ILine
{
public int StartPoint { get; set; }
public int EndPoint { get; set; }
public Edge(int startPoint, int endPoint)
{
this.EndPoint = endPoint;
this.StartPoint = startPoint;
}
}
public class Path :ILine
{
private List<Edge> connectedEdges = new List<Edge>();
public Path(List<Edge> edges) { this.connectedEdges = edges; }
public int StartPoint { get { return this.IsValid ? this.connectedEdges.First().StartPoint : 0; } }
public int EndPoint { get { return this.IsValid ? this.connectedEdges.Last().EndPoint : 0; } }
public bool IsValid { get { return this.EdgeCount > 0; } }
public int EdgeCount { get { return this.connectedEdges.Count; } }
// For now as no weights logics are defined
public int PathWeights { get { return this.EdgeCount; } }
public List<Edge> ConnectedEdges { get { return this.connectedEdges; } }
}