C++ has std::vector
and Java has ArrayList
, and many other languages have their own form of dynamically allocated array. When a dynamic array runs out of space, it gets reallocated into a larger area and the old values are copied into the new array. A question central to the performance of such an array is how fast the array grows in size. If you always only grow it large enough to fit the current push, you'll end up reallocating every time. So it makes sense to double the array size, or multiply it by say 1.5.
Is there an ideal growth factor? 2x? 1.5x? By ideal I mean mathematically justified, best balancing performance and wasted memory. I realize that theoretically, given that your application could have any potential distribution of pushes that this is somewhat application dependent. But I'm curious to know if there's a value that's "usually" best, or is considered best within some rigorous constraint.
I've heard there's a paper on this somewhere, but I've been unable to find it.
It will entirely depend on the use case. Do you care more about the time wasted copying data around (and reallocating arrays) or the extra memory? How long is the array going to last? If it's not going to be around for long, using a bigger buffer may well be a good idea - the penalty is short-lived. If it's going to hang around (e.g. in Java, going into older and older generations) that's obviously more of a penalty.
There's no such thing as an "ideal growth factor." It's not just theoretically application dependent, it's definitely application dependent.
2 is a pretty common growth factor - I'm pretty sure that's what ArrayList
and List<T>
in .NET uses. ArrayList<T>
in Java uses 1.5.
EDIT: As Erich points out, Dictionary<,>
in .NET uses "double the size then increase to the next prime number" so that hash values can be distributed reasonably between buckets. (I'm sure I've recently seen documentation suggesting that primes aren't actually that great for distributing hash buckets, but that's an argument for another answer.)