For an assignment we were asked to create a function that would reverse all the elements in an arbitrarily nested list. So inputs to the function should return something like this:
>>> seq = [1,[2,[3]]]
>>> print arb_reverse(seq)
[[[3],2],1]
>>> seq = [9,[[],[0,1,[[],[2,[[],3]]]],[],[[[4],5]]]]
>>> print arb_reverse(seq)
[[[[5,[4]]],[],[[[[3,[]],2],[]],1,0],[]],9]
I came up with a recursive solution which works well:
def arb_reverse(seq):
result = []
for element in reversed(seq):
if not is_list(element):
result.append(element)
else:
result.append(arb_reverse(element))
return result
But for a bit of a personal challenge I wanted to create a solution without the use of recursion. One version of this attempt resulted in some curious behavior which I am not understanding. For clarification, I was NOT expecting this version to work properly but the resulting input mutation does not make sense. Here is the iterative version in question:
def arb_reverse(seq):
elements = list(seq) #so input is not mutated, also tried seq[:] just to be thorough
result = []
while elements:
item = elements.pop()
if isinstance(item, list):
item.reverse() #this operation seems to be the culprit
elements += item
else:
result.append(item)
return result
This returns a flattened semi-reversed list (somewhat expected), but the interesting part is what it does to the input (not expected)...
>>> a = [1, [2, [3]]]
>>> arb_reverse(a)
[2, 3, 1]
>>> a
[1, [[3], 2]]
>>> p = [1, [2, 3, [4, [5, 6]]]]
>>> print arb_reverse(p)
[2, 3, 4, 5, 6, 1]
>>> print p
[1, [[[6, 5], 4], 3, 2]]
I was under the impression that by passing the values contained in the input to a variable using list()
or input[:]
as i did with elements
, that I would avoid mutating the input. However, a few print statements later revealed that the reverse method had a hand in mutating the original list. Why is that?
The list() call is making a new list with shallow-copied lists from the original.
Try this (stolen from here):
from copy import deepcopy
listB = deepcopy(listA)