My data looks like this:
TEST
2012-05-01 00:00:00.203 OFF 0
2012-05-01 00:00:11.203 OFF 0
2012-05-01 00:00:22.203 ON 1
2012-05-01 00:00:33.203 ON 1
2012-05-01 00:00:44.203 OFF 0
TEST
2012-05-02 00:00:00.203 OFF 0
2012-05-02 00:00:11.203 OFF 0
2012-05-02 00:00:22.203 OFF 0
2012-05-02 00:00:33.203 ON 1
2012-05-02 00:00:44.203 ON 1
2012-05-02 00:00:55.203 OFF 0
Ultimately, I want to be able to downsample data like this to individual days, using, mean, min, max -values, for example. I cannot get it to work for my data and get this error:
TypeError: unhashable type: 'list'
Perhaps it has something to do with the date format in the data frame since an index line looks like this:
[datetime.datetime(2012, 5, 1, 0, 0, 0, 203000)] OFF 0
Can anyone help. My code so far is this:
import time
import dateutil.parser
from pandas import *
from pandas.core.datetools import *
t0 = time.clock()
filename = "testdata.dat"
index = []
data = []
with open(filename) as f:
for line in f:
if not line.startswith('TEST'):
line_content = line.split(' ')
mydatetime = dateutil.parser.parse(line_content[0] + " " + line_content[1])
del line_content[0] # delete the date
del line_content[0] # delete the time so that only values remain
index_row = [mydatetime]
data_row = []
for item in line_content:
data_row.append(item)
index.append(index_row)
data.append(data_row)
df = DataFrame(data, index = index)
print df.head()
print df.tail()
print
date_from = index[0] # first datetime entry in data frame
print date_from
date_to = index[len(index)-1] #last datetime entry in date frame
print date_to
print date_to[0] - date_from[0]
dayly= DateRange(date_from[0], date_to[0], offset=datetools.DateOffset())
print dayly
grouped = df.groupby(dayly.asof)
#print grouped.mean()
#df2 = df.groupby(daily.asof).agg({'2':np_mean})
time2 = time.clock() - t0
print time2
You'd better leave all the date-time interpolation to pandas
and just feed it with a clean input stream. Then you can separate fields using read_fwf
(for fixed-width formatted lines). For example:
import pandas
import StringIO
buf = StringIO.StringIO()
buf.write(''.join(line
for line in open('f.txt')
if not line.startswith('TEST')))
buf.seek(0)
df = pandas.read_fwf(buf, [(0, 24), (24, 27), (27, 30)],
index_col=0, names=['switch', 'value'])
print df
Output:
switch value
2012-05-01 00:00:00.203 OFF 0
2012-05-01 00:00:11.203 OFF 0
2012-05-01 00:00:22.203 ON 1
2012-05-01 00:00:33.203 ON 1
2012-05-01 00:00:44.203 OFF 0
2012-05-02 00:00:00.203 OFF 0
2012-05-02 00:00:11.203 OFF 0
2012-05-02 00:00:22.203 OFF 0
2012-05-02 00:00:33.203 ON 1
2012-05-02 00:00:44.203 ON 1
2012-05-02 00:00:55.203 OFF 0