I need to generate all the partitions of a given integer.
I found this algorithm by Jerome Kelleher for which it is stated to be the most efficient one:
def accelAsc(n):
a = [0 for i in range(n + 1)]
k = 1
a[0] = 0
y = n - 1
while k != 0:
x = a[k - 1] + 1
k -= 1
while 2*x <= y:
a[k] = x
y -= x
k += 1
l = k + 1
while x <= y:
a[k] = x
a[l] = y
yield a[:k + 2]
x += 1
y -= 1
a[k] = x + y
y = x + y - 1
yield a[:k + 1]
reference: http://homepages.ed.ac.uk/jkellehe/partitions.php
By the way, it is not quite efficient. For an input like 40
it freezes nearly my whole system for few seconds before giving its output.
If it was a recursive algorithm I would try to decorate it with a caching function or something to improve its efficiency, but being like that I can't figure out what to do.
Do you have some suggestions about how to speed up this algorithm? Or can you suggest me another one, or a different approach to make another one from scratch?
If you are going to use this function repeatedly for the same inputs, it could still be worth caching the return values (if you are going to use it across separate runs, you could store the results in a file).
If you can't find a significantly faster algorithm, then it should be possible to speed this up by an order of magnitude or two by moving the code into a C extension (this is probably easiest using cython), or alternatively by using PyPy instead of CPython (PyPy has its downsides - it does not yet support Python 3, or some commonly-used libraries like numpy and scipy).
The reason for this is, since python is dynamically typed, the interpreter is probably spending most of its time checking the types of the variables - for all the interpreter knows, one of the operations could turn x
into a string, in which case expressions like x + y
would suddenly have very different meanings. Cython gets around this problem by allowing you to statically declare the variables as integers, while PyPy has a just-in-time compiler which minimises redundant type checks.